Acta Crystallographica Section C
Crystal Structure
Communications
trans-Dichlorobis(triphenylphosphine-P) platinum(II)
Maria H. Johansson and Stefanus Otto

[^0]
trans-Dichlorobis(triphenylphosphineP)platinum(II)

Maria H. Johansson ${ }^{\mathbf{a} *}$ and Stefanus Otto ${ }^{\text {b }}$
${ }^{\text {a }}$ Inorganic Chemistry 1, University of Lund, Box 124, S-221 00 Lund, Sweden, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of the Orange Free State, Bloemfontein 9300, South Africa
Correspondence e-mail: maria.johansson@inorg.lu.se

Received 25 November 1999
Accepted 6 December 1999

Data validation number: IUC9900180
Two different crystals (A and B) were used to structurally characterize trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and to study random and systematic errors in derived parameters. The compound is isomorphous with trans- $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and with one of the polymorphs of trans- $\left[\mathrm{PtMeCl}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ reported previously. Half-normal probability plot analyses based on A and B show realistic s.u.'s and negligible systematic errors. R.m.s. calculations give very good agreement between A and $\mathrm{B}, 0.0088 \AA$. Important geometrical parameters are $\mathrm{Pt}-\mathrm{P}=2.3163$ (11) \AA, $\mathrm{Pt}-\mathrm{Cl}=2.2997$ (11) $\AA, \mathrm{P}-\mathrm{Pt}-\mathrm{Cl}=87.88$ (4) and 92.12 (4) ${ }^{\circ}$. Half-normal probability plots and r.m.s. calculations were also used to compare the title compound with the palladium analogue, showing small systematic differences between the compounds. The torsion angles around the $\mathrm{Pt}-\mathrm{P}$ bond were found to be very similar to those reported for isomorphous complexes, as well as to the torsion angles around the $\mathrm{Pt}-\mathrm{As}$ bond in trans-[$\left.\mathrm{PtCl}_{2}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$. The NMR coupling constants for the title compound are similar to $\mathrm{Pt}-\mathrm{P}$ coupling constants reported for analogous trans complexes.

Comment

Transition metal complexes containing phosphine, arsine and stibine ligands are widely being investigated in various fields of organometallic chemistry (Spessard \& Miessler, 1996). Since the structure of both cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (Anderson et al., 1982) and cis-[$\left.\mathrm{PtCl}_{2}\left(\mathrm{SbPh}_{3}\right)_{2}\right]$ (Wendt et al., 1998) are known we decided to investigate systematically the dichloroplatinum complexes containing ligands with group 15 donor atoms. Crystallographic studies on cis- and trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$ (Johansson \& Otto, 2000; Johansson et al., 2000) were recently completed and here we report the structure of the trans$\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, (I). All attempts to synthesize trans[$\mathrm{PtCl}_{2}\left(\mathrm{SbPh}_{3}\right)_{2}$] have been unsuccessful so far.

(I)
$\left[\mathrm{PtCl}_{2}(\mathrm{~L})_{2}\right](L=$ tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of SMe_{2} from $\left[\mathrm{PtCl}_{2}\left(\mathrm{SMe}_{2}\right)_{2}\right]$. When using PPh_{3} or SbPh_{3} the cis isomers were exclusively obtained. In the case of $L=\mathrm{AsPh}_{3}$, however, the trans isomer was predominantly obtained, with the amount of cis isomer formed contributing less than 1% to the total yield.

Two different crystals were used in order to study random and systematic errors in derived quantities. Roughly the same $\theta_{\text {max }}, 31.7^{\circ}$, was reached in both data collections but the number of reflections are about 35% larger for B.

An r.m.s. calculation is one way to compare similar structures (Sheldrick, 1997). R.m.s. calculation on the structures from crystals A and B, gives a value of $0.0088 \AA$, indicating excellent agreement between the two structure determinations. Half-normal-probability plot analysis (Albertsson \& Schultheiss, 1974) may be used to (i) investigate the reliability of the s.u.'s and (ii) identify systematic differences. For 21 nonH atoms (half the complex), 57 independent interatomic distances ($3 n-6$) completely describe the complex. Crystals A and B show linearity with all the 57 distances $(R=0.99)$, with a slope of 0.976 ± 0.032 and an intercept $-0.019 \pm 0.032(95 \%$ confidence interval), indicating realistic s.u.'s and negligible systematic errors. The larger completeness of the data set for crystal B (95.8 and 94.5% for A) does not influence the structure refinement.

Since there are no observable differences between the structures derived from crystal A and B only structure A will be discussed here. The title compound crystallizes on an inversion centre as square planar moieties with the bulky phosphine ligands in a trans orientation. The $\mathrm{Pt}-\mathrm{P}$ bond length of 2.3163 (11) \AA and the $\mathrm{Pt}-\mathrm{Cl}$ bond length of 2.2997 (11) \AA are within the normal range for bonds of this type. The complex exhibits a distorted square-planar geometry with $\mathrm{P}-\mathrm{Pt}-\mathrm{Cl}=87.88$ (4) and $\mathrm{P}-\mathrm{Pt}-\mathrm{Cl}^{\mathrm{i}}=92.12(4)^{\circ}$ [symmetry code: (i) $-x,-y,-z$]. All three $\mathrm{P}-\mathrm{C}$ bonds are equal in length $[1.820(2) \AA$] even though the $\mathrm{C} 31-\mathrm{P}-\mathrm{Pt}$ angle [117.60 $(11)^{\circ}$] deviate significantly from the other two angles [average $111.90(11)^{\circ}$]. Similar observations are made for the Pd analogue (Ferguson et al., 1982) As generally observed, the average $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angle $104.83(15)^{\circ}$ are smaller than for an ideal tetrahedral arrangement.

Comparison with the isomorphous palladium complex (Ferguson et al., 1982) has also been made both by r.m.s. calculations and half-normal probability plots. Low r.m.s. values are found with both crystal structures A and B, 0.0218 and $0.0216 \AA$ respectively. The good correlation between A
and the Pd complex is shown in the r.m.s. plot in Scheme 1.

Scheme 1

Parts (a) and (c) of Scheme 2 show crystal structure A compared to the Pd complex using half-normal probability plot analysis. Part (b) of Scheme 2, based on independent distances, shows linearity up to 54 distances ($R=0.98$), with a slope of 2.097 ± 0.088 and intercept $-0.223 \pm 0.076(95 \%$ confidence interval). The negative intercept indicates that there are small systematic differences between the platinum and the palladium structures. A slope of 2 indicates that the underestimation of the s.u.'s is about 2 . We have earlier stated that the s.u.'s are roughly correct estimated for the platinum complex and this indicates an underestimation of the s.u.'s in the palladium complex. The largest systematic differences between the two compounds (Scheme 2), which is based on dependent distances, are shown in Table 1. The largest differences are in the $\mathrm{Pt} / \mathrm{Pd}-\mathrm{P}$ and $\mathrm{Pt} / \mathrm{Pd}-\mathrm{Cl}$ bonds and in the angles around the metal and the P atoms.

In Table 2, torsion angles for the title compound are compared to those found for related structures in the literature. The title compound is isomorphous to one form of trans[$\mathrm{PtMeCl}\left(\mathrm{PPh}_{3}\right)_{2}$] (Otto et al., 1994) of which two polymorphs are reported in the literature. The other polymorph of trans[$\left.\mathrm{PtMeCl}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (Bardi \& Piazzesi, 1981) is isomorphous to the analogous AsPh_{3} complex (Otto et al., 1995). Although good agreement was found between the $\mathrm{Cl}-\mathrm{Pt}-\mathrm{P}-\mathrm{C}$ torsion angles of the title compound and the isomorphous trans[$\mathrm{PtMeCl}\left(\mathrm{PPh}_{3}\right)_{2}$] complex, small differences were found on all three angles ranging from 0.8 (3)-1.9 (3) ${ }^{\circ}$. Surprisingly it also shows very good agreement with two of the torsion angles in the trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$ complex and only deviates by $2.99(16)^{\circ}$ on the third angle. The trans-[$\left.\mathrm{PtCl}_{2}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$
complex was found to have almost identical torsion angles in four different solvated forms thereof (Johansson et al., 2000). R.m.s. calculation of the title compound and the corresponding AsPh_{3} complex gives a value of 0.1988 indicating some differences between the structures. A superimposion of the two complexes, however, shows these differences to be mainly due to a slight twist in the phenyl rings (Scheme 3). The torsion angles of the other polymorph of trans$\left[\mathrm{PtMeCl}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is in fair agreement with the isomorphous trans- $\left[\mathrm{PtMeCl}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$ complex, but both differ significantly from the other compounds discussed.

Scheme 3

In Table 3, the title compound is compared with some related complexes in terms of crystallographic parameters and first order $\mathrm{Pt}-\mathrm{P}$ coupling constants (${ }^{1} \mathrm{~J}_{\mathrm{PtP}}$). Multinuclear NMR spectroscopy can give valuable information to the coordination mode of NMR active elements, such as ${ }^{31} \mathrm{P}$ and ${ }^{195} \mathrm{Pt}$. It is well known that the first order $\mathrm{M}-\mathrm{P}$ coupling constants enable quite good estimations of the $\mathrm{M}-\mathrm{P}(M=$ NMR active transition metal) bond length for a specific system. In this sense, estimations of bond strength and the trans influence of the ligand under investigation can be obtained (Steyn et al., 1997). Major differences in the $\mathrm{Pt}-\mathrm{P}$ $[0.058$ (2) \AA shorter trans to Cl$]$ and $\mathrm{Pt}-\mathrm{Cl}[0.045$ (2) \AA longer trans to $\left.\mathrm{PPh}_{3}\right]$ bond distances were observed between the cis- and trans-[$\left.\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ isomers. This is resulting from the smaller trans influence of Cl compared to PPh_{3}. These differences are also reflected in the $\mathrm{Pt}-\mathrm{P}$ coupling constants of 3671 and 2627 Hz for the cis and transisomers, respectively. The other $\mathrm{Pt}-\mathrm{P}$ coupling constants show the same trend, except for $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ which has a larger coupling constant than expected. This observation is probably due to the higher electron donating capability of $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$, compared to PPh_{3}. Surprisingly, equivalent $\mathrm{Pt}-\mathrm{Cl}$ bond distances are observed for the two analogous complexes trans- $\left[\mathrm{PtCl}_{2} \mathrm{~L}_{2}\right]$ with $L=$ PPh_{3} and AsPh_{3} [2.2997 (11) and 2.3012 (12) \AA, respectively], even though the $\mathrm{Pt}-\mathrm{As}$ bond [2.4101 (4) \AA] is significantly elongated compared to the $\mathrm{Pt}-\mathrm{P}$ bond $[2.3163$ (11) \AA] .

Experimental

$\mathrm{PPh}_{3}(2 \mathrm{~g}, 7.63 \mathrm{mmol})$ was added to a mixture of cis- and trans$\left[\mathrm{PtCl}_{2}\left(\mathrm{SMe}_{2}\right)_{2}\right](1 \mathrm{~g}, 2.55 \mathrm{mmol})$ in acetone $(30 \mathrm{ml})$ and stirred for 30 min . White cis-[$\left.\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ precipitated from the reaction medium in almost quantitative yields and was isolated by filtration. trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ was prepared by photochemical isomerization of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ as described by Mastin \& Haake (1970). A mixture of cis-[$\left.\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](1 \mathrm{~g}$, 1.27 mmol) in chloroform (300 ml) was irradiated with a

240 W medium pressure mercury lamp equipped with a filter to cut out radiation with wavelengths above 366 nm . After 5 h , the chloroform was evaporated at reduced pressure and the remaining solids extracted with benzene to yield a yellow solution containing the desired product. Recrystallization from a benzene/methanol solution gave crystals suitable for Xray analysis and two were selected for structure analysis. Both data sets was collected with a SMART CCD system with ω scan, -0.3° per frame and 5 s per frame. The detector distance was set to 4 cm for both crystal A and B. The number of reflections is about 35% larger for crystal B compared to A resulting in a more complete data set as well as larger redundancy, 95.8% and 94.5% in B and A , respectively. Spectral data: ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.497 \mathrm{MHz}, 85 \% \mathrm{H}_{3} \mathrm{PO}_{4}=\right.$ 0 p.p.m.): 20.51 (triplet due to $34 \%{ }^{195} \mathrm{Pt}$), ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}=2627 \mathrm{~Hz}$.

Compound (A)

Crystal data

$\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$
$M_{r}=790.53$
Triclinic, $P \overline{1}$
$a=9.1857$ (18) \AA
$b=9.6334(19) \AA$
$c=10.379(2) \AA$
$\alpha=72.44$ (3) ${ }^{\circ}$
$\beta=88.50(3)^{\circ}$
$\gamma=68.19(3)^{\circ}$
$V=809.1(3) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.622 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 6593 \\
& \quad \text { reflections } \\
& \theta=2-30^{\circ} \\
& \mu=4.623 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Rectangular plate, yellow } \\
& 0.28 \times 0.13 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens SMART CCD diffractometer
ω scans
Absorption correction: empirical (SADABS; Sheldrick, 1996)
$T_{\min }=0.358, T_{\max }=0.802$
6837 measured reflections

> 4744 independent reflections 4740 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.0223$
> $\theta_{\max }=31.64^{\circ}$
> $h=-11 \rightarrow 13$
> $k=-9 \rightarrow 14$
> $l=-13 \rightarrow 14$

Refinement

Refinement on $F^{2} \quad \mathrm{H}$-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.060$
$S=0.911$
4744 reflections
187 parameters

Table 2
Interatomic distances with largest $\delta \mathrm{m}_{i}$ values for the platinum complex when compared to the palladium complex.

$\delta \mathrm{m}_{i}$	Distance a	Order no b
16.80	$\mathrm{Pt}-\mathrm{P}$	1
7.34	$\mathrm{Pt}-\mathrm{Cl}$	1
7.04	$\mathrm{Pt}-\mathrm{C} 31$	2
5.07	$\mathrm{Cl}-\mathrm{P}$	2
4.31	$\mathrm{Pt}-\mathrm{C} 21$	2
4.19	$\mathrm{C} 14-\mathrm{C} 16$	2
4.18	$\mathrm{C} 14-\mathrm{C} 15$	1

Notes: (a) Numbering corresponds to the platinum complex; (b) $1^{\text {st }}$ and $2^{\text {nd }}$ order number represents the closest distances between 2 atoms separated by 1 or 2 formal bonds.

Table 3
Comparative torsion angles for selected trans- $\left[\mathrm{Pt} R \mathrm{Cl}(L)_{2}\right]$ ($R=\mathrm{Cl}$ or Me , $L=\mathrm{PPh}_{3}$ or AsPh_{3}) complexes..

Complex	$\mathrm{T} 1^{a}\left({ }^{\circ}\right)$	$\mathrm{T} 2^{b}\left({ }^{\circ}\right)$	$\mathrm{T} 3^{c}\left({ }^{\circ}\right)$
trans $\left.-\left[\mathrm{PtCl}_{2} \mathrm{PPh}_{3}\right)_{2}\right](\mathrm{A})^{d}$	$104.58(10)$	$-135.99(11)$	$-16.45(13)$
trans $\left.\left[\mathrm{PtCl}_{2} \mathrm{PPh}_{3}\right)_{2}\right](\mathrm{B})^{d}$	$104.68(11)$	$-136.03(12)$	$-15.27(13)$
transs $\left.\left[\mathrm{PtCl}_{2} \mathrm{AsPh}_{3}\right)_{2}\right]^{e}$	$104.22(10)$	$-138.98(12)$	$-16.66(12)$
trans- $\left[\mathrm{PtMeCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{f}$	$105.4(3)$	$-135.1(3)$	$-14.6(3)$
trans- $\left[\mathrm{PtMeCl}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{g}$	108.613	-130.248	-13.361
	113.870	-126.255	-4.954
trans- $\left[\mathrm{PtMeCl}\left(\mathrm{AsPh}_{3}\right)_{2}\right]^{h}$	$109.6(3)$	$-128.8(3)$	$-12.6(3)$
	$115.7(3)$	$-125.6(3)$	$-3.8(3)$

Notes: (a) $\mathrm{T} 1=\mathrm{Cl}-\mathrm{Pt}-L-\mathrm{C} 11 ;$ (b) $\mathrm{T} 2=\mathrm{Cl}-\mathrm{Pt}-L-\mathrm{C} 21 ;$ (c) $\mathrm{T} 3=\mathrm{Cl}-\mathrm{Pt}-L-\mathrm{C} 31$; (d) this study; (e) Johansson et al. (2000); (f) isomorph of the title compound (Otto et al., 1994); (g) polymorph of f, PPh_{3} ligands unequivalent, no s.u.'s available (Bardi \& Piazzesi, 1981); (h) isomorph of g, AsPh_{3} ligands unequivalent (Otto et al., 1995)

Table 4
Comparative crystallographic and NMR^{a} data for selected $\left[\mathrm{PtCl}_{2}(\mathrm{~L})_{2}\right](L$ $=\mathrm{P}$ or As ligand) complexes..

L	$\mathrm{Pt}-L(\AA)$	$\mathrm{Pt}-\mathrm{Cl}(\AA)$	${ }^{1} J_{\mathrm{PtP}}(\mathrm{Hz})$
$\mathrm{PPh}_{3}(\mathrm{~A})^{b}$	$2.3163(11)$	$2.2997(11)$	2627
$\mathrm{PPh}_{3}(\mathrm{~B})^{b}$	$2.3187(12)$	$2.2997(11)$	2627
$\mathrm{PPh}_{3}{ }^{c}$	$2.258(2)$	$2.345(2)$	3671
$\mathrm{PPh}_{2} \mathrm{Fc}^{d}$	$2.318(2)$	$2.301(2)$	2620
${\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}{ }^{e}}^{\mathrm{PEt}_{3}{ }^{f}} \quad 2.337(2)$	$2.317(2)$	2824	
$\mathrm{AsPh}_{3}{ }^{g}$	$2.298(18)$	$2.294(9)$	2900

Notes: (a) ca $5 \mathrm{~m} M$ in CDCl_{3}; (b) this Study; (c) cis isomer, Anderson et al. (1982); (d) Otto \& Roodt (1997); (e) Del Pra \& Zanotti (1980); (f) Messmer \& Amma (1966); (g) Johansson et al. (2000)

Compound (B)

Crystal data
$\left[\mathrm{PtCl}_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{2}\right]$
$M_{r}=790.53$

$$
Z=1
$$

Triclinic, $P \overline{1}$
$a=9.1857$ (18) \AA
$b=9.6334(19) \AA$
$c=10.379$ (2) \AA
$\alpha=72.44(3)^{\circ}$
$\beta=88.50(3)^{\circ}$
$\gamma=68.19(3)^{\circ}$
$V=809.1(3) \AA^{3}$

$$
D_{x}=1.622 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 4853
reflections
$\theta=3-30^{\circ}$
$\mu=4.623 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rectangular plate, yellow
$0.31 \times 0.14 \times 0.08 \mathrm{~mm}$

Data collection

Siemens SMART CCD diffract-	4881 independent reflections
\quad ometer	4434 reflections with $I>2 \sigma(I)$
ω - scans	$R_{\text {int }}=0.0299$
Absorption correction: empirical	$\theta_{\max }=31.71^{\circ}$
absorption corrections using	$h=-13 \rightarrow 13$
$S A D A B S$ (Sheldrick, 1996)	$k=-14 \rightarrow 13$
$T_{\min }=0.328, T_{\max }=0.709$	$l=-15 \rightarrow 14$

9288

Refinement

Refinement on F^{2}	riding model
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0330$	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0273 P)^{2}\right]$ where P
$w R\left(F^{2}\right)=0.0574$	$=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$S=0.955$	$\Delta \rho_{\max }=0.675 \mathrm{e}^{-3}$
4881 reflections	$\Delta \rho_{\min }=-1.098 \mathrm{e}^{-3}$
187 parameters	

References

Anderson, G. K., Clark, H. C., Davies, J. A., Ferguson, G. \& Parvez, M. (1982). J. Crystallogr. Spectrosc. Res. 12, 449-458.

Albertsson, J. \& Schultheiss, P. M. (1974). Acta Cryst. A30, 854-855.
Bardi, R. \& Piazzesi, A. M. (1981). Inorg. Chem. Acta, 47, 249-254.
Brandenburg, K. (1997). DIAMOND. University of Bonn, Germany.
Del Pra, A. \& Zanotti, G. (1980). Inorg. Chim. Acta, 39, 137-141.
Ferguson, G., McCrindle, R., McAlees, A. J. \& Parvez, M. (1982). Acta Cryst. B38, 2679-2681.
Johansson, M. H. \& Otto, S. (2000). In preperation.
Johansson, M. H., Otto, S., Roodt, A. \& Oskarsson, Å. (2000). Acta Cryst. B56. Accepted.
Mastin, S. H. \& Haake, P. (1970). Chem. Commun. pp. 202-202.
Messmer, G. G. \& Amma, E. L. (1966). Inorg. Chem. 5, 1775-1781.
Otto, S., Roodt, A. \& Leipoldt, J. G. (1994). S. Afr. J. Chem. 48, 114-119.
Otto, S., Roodt, A. \& Leipoldt, J. G. (1995). Acta Cryst. C51, 1105-1106.
Otto, S. \& Roodt, A. (1997). Acta Cryst. C53, 1414-1416.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spessard, G. O. \& Miessler, G. L. (1996). Organometallic Chemistry, pp. 131135. Upper Saddle River, New Jersey, USA: Prentice Hall.

Steyn, G. J. J., Roodt, A., Poletaeva, I. \& Varshavsky, Y. (1997). J.Organomet. Chem. pp. 536-537, 197-205.
Wendt, O. F., Scodinu, A. \& Elding, L. I. (1998). Inorg. Chim. Acta, 277, 237-
241.

Table 5
Selected geometric parameters ($\left(\AA,^{\circ}\right)$ for (B).

$\mathrm{Pt}-\mathrm{Cl}$	$2.2997(11)$	$\mathrm{P}-\mathrm{C} 21$	$1.819(3)$
$\mathrm{Pt}-\mathrm{P}$	$2.3187(12)$	$\mathrm{P}-\mathrm{C} 31$	$1.824(3)$
$\mathrm{P}-\mathrm{C} 11$	$1.816(3)$		
$\mathrm{Cl}^{\mathrm{i}}-\mathrm{Pt}-\mathrm{P}$	$92.12(4)$	$\mathrm{C} 11-\mathrm{P}-\mathrm{Pt}$	$111.93(10)$
$\mathrm{Cl}-\mathrm{Pt}-\mathrm{P}$	$87.88(4)$	$\mathrm{C} 21-\mathrm{P}-\mathrm{Pt}$	$111.93(11)$
$\mathrm{C} 11-\mathrm{P}-\mathrm{C} 21$	$106.35(14)$	$\mathrm{C} 31-\mathrm{P}-\mathrm{Pt}$	$117.39(11)$
$\mathrm{C} 11-\mathrm{P}-\mathrm{C} 31$	$103.85(15)$		
$\mathrm{C} 21-\mathrm{P}-\mathrm{C} 31$	$104.45(15)$		

Symmetry codes: (i) $-x,-y,-z$.

The crystallographic raw data frames were integrated, the reflections reduced and corrections were applied for Lorentz and polarization effects.

For A and B, data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Financial assistance from the South African FRD, the Research Fund of the University of the Orange Free State, the Swedish Natural Science Research Council and The Crafoord Foundation is gratefully acknowledged.

[^0]: Copyright © International Union of Crystallography
 This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission
 has been checked by a Section C Co-editor though the text in the "Comments" section is the responsibility of the authors.

